Stardust Quick Guide v1.05
1. Introduction
Quick start
2. Introduction to the PCA techniques
2.1. Dimensionality reduction
2.1.1. A first example: from 2D to 1D
2.2.2. A second example: from 3D to 2D
2.2.3. Viewing segments
2.2.4. Going back to the Census-Income dataset
2.2.5. Projecting the original axises inside the reduced space.
2.2. Distance definition
2.2.1. The K-Means Algorithm
2.2.2. Automatic assignment of new customers to segments
2.2.3. All the type of distances available inside StarDust
2.2.4. A first example about the importance of variable “normalization”
2.2.5. A second example about variables representing the same concept
2.3. Summary
3. TIMi Installation
4. How to start « TIMi – StarDust module »?
4.1. Introduction
4.2. Using StarDust BEFORE a predictive analysis
4.2.1. The DataSource Editor (Step 1)
4.2.2. The Type Var file Editor (Step 2)
4.3. Using StarDust AFTER a predictive analysis
5. How To use « TIMi – StarDust module »?
5.1. Viewing the population
5.2. The central Toolbar.
5.2.1. Start new segmentation Analysis [FILE]
5.2.2. Open segmentation Analysis [FILE]
5.2.3. Save segmentation Analysis [FILE]
5.2.4. Parameter Windows
5.2.5. Camera move and rotation Mode [MOUSE MODE]
5.2.6. Mouse Pick Mode [MOUSE MODE]
5.2.7. Invert selection
5.2.8. Auto-rotate 3D view
5.2.9. View one Var Distribution [CHART]
5.2.10. Compare variable distribution for many variables [CHART]
5.2.11. View Summary Table [CHART]
5.2.12. View final report
5.2.13. Keep Display Aspect Ratio?
5.2.14. Show the Segments
5.2.15. Compute new segmentation and shows it!
5.3. Setup the 3D display
5.3.1. The (Meta-)Group tab
5.3.1.1. Creating a new group based on the current selection
5.3.1.2. Configuring the colour and motif of the 3D points
5.3.1.3. Manipulating meta-Groups
5.3.1.4. Creating Groups based on modalities of variables
5.3.1.5. Creating Groups based on the segments
5.3.2. The graphic tab
5.3.2.1. (Meta-)Group selection for Display
5.3.2.2. Axises
5.3.2.3. Item Labels
5.3.2.4. Display the original axises inside the 3D view.
5.4. Configuration of the PCA analysis
5.4.1. Detecting and removing outliers using the PCA
5.4.2. “Zooming” on the data using the PCA
5.5. How to create a segmentation?
5.5.1. Definition of the Distance to use inside the segmentation
5.5.2. The parameters of the K-Means algorithm
5.5.2.1. Control 1: Run K-means
5.5.2.2. Control 2: Sampling
5.5.2.3. Control 3: Energy
5.5.2.4. Control 4: Random seed
5.5.2.5. Control 5: Retries for seeding
5.5.3. The Ward’s algorithm
5.5.3.1. How to find the right number of segments?
5.5.3.2 The different variations around the original Ward’s algorithm
5.5.4. Setup the display of the segments
5.5.5. Saving the segments in a CSV file.
5.5.5.1. The “Save Core” option is enabled
5.5.5.2. “Save the Distance” to the nearest centroid.
5.5.6. Exporting and using segmentation models.
5.5.7. Explaining the segments from a business-point-of-view
6. Virtual Reality (VR) display
7. Conclusion